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Abstract
The specific heat has been measured for the relaxor ferroelectrics
PbMg1/3Nb2/3O3 and PbMg1/3Ta2/3O3 and the low-dielectric-constant material
BaMg1/3Ta2/3O3 over a temperature range of 2–420 K. The behaviours of
the specific heat for PbMg1/3Ta2/3O3 and BaMg1/3Ta2/3O3 crystals have been
qualitatively compared. A large excess of specific heat of PbMg1/3Ta2/3O3

over that of BaMg1/3Ta2/3O3 has been revealed. The behaviour of the
low-temperature specific heat of PbMg1/3Nb2/3O3 has been analysed in the
frameworks of the shell model, Debye model, Einstein oscillator, two-level
systems approach, and fractal approach. The excess of the specific heat of
PbMg1/3Nb2/3O3 over the harmonic phonon contribution has been estimated,
and its possible origin is discussed.

1. Introduction

In recent years, considerable attention has been paid to studies of the influence of disordering on
lattice dynamics and, hence, on thermodynamic properties of ferroelectric crystals. The low-
temperature region is of primary importance in the case of ferroelectrics and related materials
since it is populated mostly by low-energy modes which are, as a rule, responsible for phase
transitions in these crystals [1]. It has been found for such ferroelectric crystals as BaTiO3,
Pb5Ge3O11, triglycine sulfate, and some others that the behaviour of the specific heat Cp

obeys the Debye law T 3 dependence predicted for crystals at sufficiently low temperatures.
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In some ferroelectrics, such as PbMg1/3Nb2/3O3, PbMn1/2Ta1/2O3, Sr0.61Ba0.39Nb2O6, and
others, anomalous properties typical of glass-like systems have been revealed. In particular,
the low-temperature specific heat has been found to considerably exceed the specific heat
predicted by the Debye T 3 dependence [2–14]. Since the materials mentioned above have
different structural motifs, no model adequately explaining the anomalous behaviour of the
specific heat at low temperatures even qualitatively has been suggested so far.

In this connection, of particular interest is the investigation of crystals having the same
structural motif, such as complex perovskites with the common formula AB′

x B′′
1−x O3 (where A

and B are metal ions), whose thermodynamic properties have been intensively studied [4, 9, 13–
22]. It was shown that there is an excess contribution to the specific heat of relaxor
ferroelectrics PbMg1/3Nb2/3O3 and PbMg1/3Ta2/3O3 in the regions of dielectric anomalies
at high temperatures [19]. At low temperatures, a specific heat of PbMg1/3Nb2/3O3 in excess
of the Debye term was revealed [17, 18], in agreement with previous studies [4, 13]. This
additional contribution cannot be described by an Einstein term or a two-level systems term
(TLS) satisfactorily [17, 18]. To account for this excess specific heat, the fracton approach
was used in [17, 18]. However, it is well known that the specific heat for a number of crystals
does not obey the predictions of the Debye model approach [23]. This may just reflect the fact
that the vibration spectra of real materials are more complicated than the assumptions of the
Debye model [23–26].

Studies of complex perovskites frequently employ PbMg1/3Nb2/3O3, PbMg1/3Ta2/3O3,
and BaMg1/3Ta2/3O3 as model objects [27]. Crystals of this family are characterized by a
chemical disordering arising due to the presence of ions of unlike valencies in the B sublattice.
The PMN crystal is a relaxor ferroelectric whose dielectric permeability maximum is observed
at Tm ∼ 270 K at frequency f = 10 kHz [27]. PMN has the Pm3̄m symmetry though
displacements of ions from centrosymmetric sites of a simple cubic cell already occur at
fairly high temperatures [28]. The PMT crystal is a well known relaxor ferroelectric with a
temperature of the dielectric permeability maximum of Tm ∼ 170 K at f = 10 kHz [27].
Neutron scattering data point to the displacement of lead ions from centrosymmetric sites of
the cubic cell of the PMT crystal [29]. A highly important difference between PMN and PMT
crystals is their differing behaviours in an applied electric field. The PMN crystal experiences
a structural phase transition at Tc ∼ 210 K [30], while the PMT crystal preserves a cubic
symmetry over the entire ranges of temperatures and applied electric fields studied [31, 32].
The BMT crystal is a material with a low dielectric permeability [33] and does not exhibit any
structural instability [34–36].

Thus, investigation of the behaviours of PbMg1/3Nb2/3O3, PbMg1/3Ta2/3O3, and
BaMg1/3Ta2/3O3 and comparison of the low-frequency properties of these materials having
the same structural motif but fundamentally different dielectric properties can give valuable
information about low-frequency lattice dynamics of relaxor ferroelectrics at low temperatures
in the presence of chemical disordering. This paper presents results of calorimetric studies
and model calculations for PMN, PMT, and BMT crystals.

2. Experimental details and results

Measurements of the specific heat were carried out on ceramic and single-crystal samples.
Details of the sample preparation can be found elsewhere [17–19]. Precise specific
heat measurements between 13 and 420 K were made using a homemade adiabatic
calorimeter [37, 38]. The specific heat between 2 and 50 K was measured by a relaxation
method using a PPMS (Quantum Design Inc.). The results obtained by the two methods were
found to be in good agreement.
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Figure 1. The specific heat for PMN, PMT, and BMT crystals. Symbols show the experimental data.
The full curve in the inset is the Debye approximation of C p for BMT crystal with �D = 265 K.
Note that the difference between the specific heat of PMT and that of BMT tends to disappear at
high temperature.

The measured specific heat in the range 2–420 K is shown in figure 1. It is readily
seen that there is no pronounced anomaly of Cp in the vicinity of the temperatures where
dielectric susceptibilities of PMN and PMT peak, consistently with earlier data [13, 17–19].
The behaviours of Cp for PMN and PMT are seen to be very similar to each other. Up to about
260 K, the specific heat of PMT exceeds that of PMN by less than 3%; at elevated temperatures,
the specific heat of PMN becomes somewhat larger than that of PMT. As pointed out in [19],
the behaviour of the specific heat in PMN and PMT in this temperature range can be due to
the formation of a polar short-range order in these crystals. The specific heat of BMT behaves
quite differently from Cp for PMN and PMT. Starting from T ∼ 30 K and up to T ∼ 300 K, Cp

for BMT is lower by ∼8 J K−1 mol−1 than those for PMN and PMT. Such a drastic difference
cannot be attributed just to the mass effects due to the different masses of Pb/Ba or Nb/Ta ions.
An even more pronounced difference is observed at lower temperatures. The inset to figure 1
shows the behaviour of the specific heat of PMT and BMT crystals at T < 20 K. It is clear
that Cp for PMT exceeds that for BMT by a factor of ∼6 at T = 20 K.

It is possible to approximate the temperature dependence of Cp for BMT by the Debye
function CD with three degrees of freedom, with �D = 265 K at T < 16 K (the solid curve
in the inset to figure 1). At higher temperatures, the experimental Cp for BMT increases
more rapidly than the approximation using CD. Formally, addition of the Einstein oscillator
resolves this discrepancy and allows one to describe the experimental data. Therefore, in spite
of chemical disordering of the B sublattice, the low-temperature specific heat of the BMT
crystal does not exhibit any anomalies. Note that attempts to describe the behaviour of Cp

of PMT using CD failed even for such low temperatures. That is why one may conclude that
there is some excess specific heat in the relaxor material PMT with respect to the low dielectric
constant material BMT. A pronounced difference between Cp for PMT and that for BMT can
be attributed to a higher density of vibration states at low energies of the PMT crystal compared
to BMT. Indeed, the increase in density of states with decreasing temperature was observed for
PMT and PMN crystals, while in BMT the density of states is constant for varying temperature
within the experimental accuracy [34, 36].
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Figure 2. The behaviour of the excess specific heat �C for PMT crystal. Curve (A) holds for the
excess specific heat of PMT with respect to BMT (see the text). Curve (B) denotes the anomalous
specific heat inferred in [19].

The method used to estimate the additional contributions (besides the phonon ones) to the
specific heat for the compounds containing magnetic ions involves subtraction of the specific
heat of the compound without magnetic properties from that of the compound demonstrating
magnetic properties (see, e.g., [39] and references therein). Since both PMT and BMT
are cubic perovskites, they should contain equal numbers of phonon dispersion branches.
So far, investigations of the BMT crystal by means of dielectric techniques [33, 35], light
scattering [35, 40], neutron scattering [29, 34, 36], and adiabatic calorimetry have not revealed
any ferroelectric properties and anomalies in the lattice dynamics. Thus, estimation of the
excess specific heat of the PMT crystal relative to that of BMT can prove useful.

Figure 2 shows the behaviour of the difference �C ≡ Cp(PMT) − Cp(BMT) in the
temperature range studied. It is readily seen that the excess of the specific heat �C for PMT
relative to that for BMT has a tendency to vanish at low (∼3 K) and high temperatures (∼420 K)
and exhibits two anomalies with maxima at T ∼ 40 and ∼230 K. The high-temperature
anomaly qualitatively corresponds to the excess specific heat for PMT obtained in [19] in the
framework of a different approach. Since its temperature position approximately corresponds
to the dielectric permeability peak, it is natural to suppose that the high-temperature anomaly is
associated with the appearance of the short-range ferroelectric order in PMT [19]. Of interest
is the high �C in the vicinity of both maxima: �C ∼ 10.6 J mol−1 K−1 at T ∼ 39 K and
�C ∼ 7.7 J mol−1 K−1 at T ∼ 217 K. Note, for comparison, that the specific heat of the
LaAlO3 crystal at T ∼ 40 K is ∼6.1 J mol−1 K−1 [41], and the specific heat of SrF2 at T ∼ 40
is ∼7.6 J mol−1 K−1 [42], while the specific heat of the cubic perovskite KZnF3 at T ∼ 40 is
∼16.6 J mol−1 K−1 [43], which is only 35% more than the excess of the specific heat of PMT
over that of BMT at the same temperature.

Since Cp for PMN and that for PMT at low temperatures are close to each other (see
figure 1), it is evident that the PMN crystal has an excess specific heat not only relative to
the Debye contribution but also relative to the specific heat of the complex perovskite BMT.
Unfortunately, there is a lack of data on the dispersion curves of phonons for PMT and BMT
crystals. Therefore, we cannot analyse quantitatively the observed difference in value of Cp

of PMT and BMT crystals. Below we analyse the behaviour of the specific heat in the relaxor
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ferroelectric PMN for which there is some information on the dispersion of the phonons. Note
that the thermodynamic behaviours of PMN and PMT are similar.

3. Excess specific heat in PMN

3.1. Different approaches to describing specific heat

Considerable attention has been paid to dynamic properties of PMN relaxor ferroelectric [44–
47], and a simple model for lattice dynamics calculations for PMN was proposed [48]. It is
worth considering different approaches to the description of the excess specific heat of PMN at
low temperatures using the model of [48] to account for the phonon contribution to the specific
heat of PMN. The basic models used in analysis of the temperature dependence of the specific
heat of PMN at low temperatures are as follows.

The Debye model. In the case of the interpolation Debye scheme, only acoustic branches of
the vibrational spectrum of a crystal are taken into consideration, and it is assumed that all
of them are characterized by the same sound velocity. Then the Brillouin zone of the crystal
is approximated by a sphere of the same volume in an inverse space [49, 50]. Under these
assumptions, the formula for calculation of the specific heat acquires the form

CD = 9R

(
T

�D

)3 ∫ ED/kB T

0

ex x4

(ex − 1)2
dx (1)

where R = 8.314 J mol−1 K−1 is the universal gas constant, kB is Boltzmann’s constant, �D

is the Debye temperature, and ED = kB�D is the corresponding Debye energy. It is evident
that if the Debye temperature is known from independent acoustic measurements (ultrasonic
or Brillouin), expression (1) can be used to estimate the contribution of acoustic phonons to
the specific heat of the crystal. In this paper we consider the specific heat at constant volume
CV in the low-temperature region. Since in this case the difference between CV and CP is
small, we omit the subscript for C in the ensuing discussion.

The Einstein model. In the Einstein model [50–52] it is assumed that every atom vibrates
similarly to a harmonic oscillator in a potential well formed by the forces of its interaction
with the neighbours. The spectrum of a crystal consists of levels located at distance h̄ωE from
each other. The contribution of the Einstein oscillator to the specific heat is given by

CE = 3R

(
h̄ωE

kT

)2 exp
(

h̄ωE
kBT

)
(
exp

( h̄ωE
kB T

) − 1
)2 (2)

where ωE = 2πνE is the characteristic frequency of a corresponding oscillator. The Einstein
model is rather well suited for taking into account the contribution of optical phonons to the
specific heat [50]. Under certain conditions, local oscillations of a point defect are also well
approximated by an Einstein oscillator [52–54].

The specific heat of a harmonic crystal. In the case where the phonon spectrum of a crystal
is known, the specific heat in the harmonic approximation is given by [23, 50, 52]

CH = R
1

N

∑
n,k

[
βnk

2 sinh(βnk)

]2

, βnk = h̄ωn(k)

2kBT
(3)

where N is the total number of atoms, and ωn(k) denotes the phonon dispersion curve;
other symbols have the same meaning as above. The subscript ‘H’ in equation (3) indicates
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that calculations of phonon dispersion curves for the PMN crystal within the harmonic
approximation [48] involved the use of the shell model [55].

The two-level-system model. The commonly accepted method of description of the low-
temperature behaviour of the specific heat of canonical glasses and also of a number of related
disordered systems is the two-level-system (TLS) formalism [56, 57]. In this case, at low
temperatures (most often at T < 1.5 K), a linear dependence of the specific heat on temperature
is predicted, i.e.,

CTLS = BT, (4)

where B is the normalizing parameter that depends on the density of states of the TLS. It
should be noted that this approach to the description of specific heat is often successfully used
for higher temperatures.

The fracton model. To describe the behaviour of such disordered condensed media as
aerogels, the fractal approach is efficiently used [58, 59]. It assumes the self-similarity of
an object on a definite scale of lengths [60]. In fractal structures, vibrational excitations, i.e.,
fractons, whose dispersion law differs from that of phonons can be realized. The density
of vibrational states of fractons is characterized by a spectral (fracton) dimension d̃ [59]:
G(ω) ∝ ωd̃−1. There is a crossover frequency ωco. At ω � ωco, the Debye law characterizing
the density of states of acoustic modes is fulfilled: G(ω) ∝ ω2. Under these assumptions, the
specific heat of a disordered material can be written as [58]

Cfr = 9R

(
T

�D

)3 ∫ Eco/kB T

0

ex x4

(ex − 1)2
dx + AT d̃

∫ Em/kB T

Eco/kB T

ex x d̃+1

(ex − 1)2
dx (5)

where Eco = h̄ωco is the energy at which the Debye regime changes to the fracton one
(crossover energy), Em = h̄ωm is the maximum energy at which the fracton regime is realized.
The first term in expression (5) is the contribution of acoustic vibrations to the specific heat
of a disordered object. Equation (5) was used in [17, 18] to describe the specific heat of
the PMN crystal at T < 30 K. The phonon contribution to the specific heat of PMN was
estimated by using the Debye temperature �D = 376 K obtained from low-temperature
acoustic measurements [61].

In this work we estimate the phonon contribution to the specific heat of PMN through
equation (3) by using parametrization of the phonon spectrum of PMN taken from [48]. Then
the expression for the fracton contribution to the specific heat acquires the form

C = R
1

N

∑
n,k

[
βnk

2 sinh(βnk)

]2

+ AT d̃
∫ Em/kB T

Eco/kB T

ex x d̃+1

(ex − 1)2
dx ≡ CH + Cfr, (6)

and the possible contribution of two-level systems to the specific heat can be estimated in
this approach as a sum CH + CTLS (equation (3) + equation (4)), etc. Direct summation
of contributions of different origins to the total specific heat of a crystal is justified if the
contributions to the free energy corresponding to them are additive (see, e.g., [62]). Since
harmonic phonons belong to vibrational degrees of freedom resulting from the long-range
order in crystals, and the other contributions discussed above (with the exception of the Debye
one) are determined by either local properties or short-range order, the approach that we use
can be regarded as satisfactory.
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Figure 3. The specific heat of PMN crystal at low temperatures. Symbols show the experimental
data. The dotted curve is the Debye approximation CD, the dashed curve is CH from formula (3),
and the full curve is the specific heat fitted with the formula (6).

3.2. Results of model calculations and their comparison with experiment

To calculate the phonon contribution to the specific heat of PMN, the shell model of a classic
perovskite with a virtual ion in the B sublattice having the mass mMN = (1/3)mMg + (2/3)mNb

was used [48]. This model reproduces satisfactorily dispersion curves of acoustic and low-
frequency optical phonons [45]. Therefore, it can be expected at low temperatures to describe
well the contribution of harmonic phonons to the specific heat of PMN. Unfortunately,
difficulties are encountered in description of the high-frequency dispersion curves for PMN
because of problems in interpretation of experimental data [45] and imperfection of the
model [48]. For this reason, it is impossible to compare the experimental specific heat and
its calculated values CH at higher temperatures, when the contribution of high-frequency
optical phonons becomes significant. To calculate CH, the software LADY for lattice dynamics
simulation was used [63].

Figures 3 and 4 show the measured specific heat and results of approximation of the C(T )

dependence by the least-squares method in the framework of all the models discussed above
and their combination for PMN at T < 30 K. It is readily seen that the Debye contribution
to the specific heat of PMN is negligibly small as compared with the experimental value and
is much lower than CH. In particular, at T = 25 K the CD/CH ratio is equal to 0.1, which
confirms the conclusion [26] that it is difficult to infer the presence of anomalous excess specific
heat from consideration of the behaviour of the specific heat through the Debye expression
(equation (1)).

As can be seen from figure 3, at T = 25 K CH/Cexp = 0.2. At the same time, at low
temperatures the values of CH calculated for PMN and Cexp for BMT become close to each
other: at T = 20 K CH = 2 J mol−1 K−1, and Cexp(BMT) = 1.7 J mol−1 K−1. This means
that the experimental specific heat of the complex perovskite BMT is close to the calculated
specific heat of a classic cubic perovskite.

The Einstein oscillator with frequency νE = 1.8 THz = 60 cm−1 allows one to take into
consideration the contribution to the specific heat of PMN additional to CH only at T > 17 K
(we recall that 1 meV = 0.24 THz = 8.06 cm−1). At lower temperatures, the contribution of
CEIN decreases much faster than the experimental specific heat. Such a behaviour of CEIN was
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best fit of the TLS contribution with the formula (4).

also revealed in [17, 18] when the contribution of the acoustic phonons to the specific heat of
PMN was described by using CD (equation (1)). Thus, introduction of the Einstein oscillator
cannot explain the observed behaviour of the specific heat in PMN at low temperatures as
well. This is not surprising because at low temperatures CEIN often decreases faster than the
corresponding experimental data [23, 50].

The behaviour of the excess specific heat in PMN can be described in the framework
of the fractal approach much better (compare figures 3 and 4). The calculated specific
heat does not describe experimental results only at T < 5 K. The solid curves in figure 3
obtained at a fixed Em = 7.2 meV correspond to the following parameters of the fractal
model: A = 0.054, d̃ = 1.6, Eco = 5.1 meV. These parameters are in good agreement with
those obtained from inelastic neutron scattering data at T = 50 K [17, 18]: Eco = 5 meV,
Em = 7 meV, and d̃ = 1.7. Note that the results of approximation through equation (6) are
very close to the parameters obtained in [17, 18] where CD was used to take into account the
phonon contribution to the specific heat of PMN. An important difference between the results
of these and earlier calculations [17, 18] is in the behaviour of the approximation function
with free parameter Em. Earlier [17, 18], the approximation with free parameter Em made the
agreement between the model and experiment much better. Now, when we use equation (6), the
improvement is minor, and the model does not describe the data at 2 K < T < 5 K satisfactorily.
One of the possible reasons for such a discrepancy between experimental and calculated data
is the presence of another, additional contribution to the specific heat of PMN [4, 64].

4. Conclusion

A comparative analysis of the specific heat for the complex perovskites PbMg1/3Nb2/3O3,
PbMg1/3Ta2/3O3, and BaMg1/3Ta2/3O3 exhibiting different dielectric properties has shown
that in the low-temperature region the excess specific heat is not a direct consequence of
disordering of the B sublattice. Excess specific heat at low temperatures has been revealed in
PMN and PMT crystals where lead ions are displaced from ideal sites of the perovskite cell.
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Calculations for the PMN crystal in the framework of the shell model have shown that a
simple approximation by a cubic lattice with a virtual ion yields a specific heat comparable
with that of the low dielectric constant BMT crystal at low temperatures.

The use of different model approximations for description of the excess specific heat
of PMN at low temperatures has shown that the best approximation of the experimental
dependence is achieved in the framework of the fractal approach.

Analysis of calculations and experimental data obtained by complementary techniques
(inelastic neutron scattering and experimental studies of the specific heat) has revealed, with
a high reliability, the existence of an additional low-frequency excitation in the vibrational
spectrum of the PMN crystal.
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